The Potential for International Dissemination of Emerging Viral Pathogens

Jonathan M Read
Derek AT Cummings

Data source: OAG traffic analyser, Jan 2017

5.2m outbound
201 countries

IMED, Vienna, Nov 2018
Aims

• Quantify delays
• Model implications for epidemic and international spread
• Apply to emergence of human-adapted avian influenza A(H7N9)
A(H7N9) human cases, China 2013-2018

Number of cases, week$^{-1}$

Data source: WHO DON; HKCPH reports
Reporting delay: Onset \rightarrow Reporting to WHO

- Delays are frequent and can be substantial
 - median 13 days, range 1 – 72
- Associated with sex, age, province, and epidemic wave
- Adjusted delays:
 - Hong Kong 9 d (Prl: 7-11)
 - Zhejiang 19 d (Prl: 16-23)
 - Jiangsu 23 d (Prl: 19-27)
 - Xinjiang 51 d (Prl: 37-69)

Data source: WHO DON
Pandemic emergence model

- Stochastic state transition and infection
- Used observed interval distributions
 - Wang 2017 Lancet ID
 - Sensitivity to R_0

Best case
- Intervals as zoonotic A(H7N9)
- Infectious when symptomatic

Worst case
- Shorter incubation period
- Initial nosocomial transmission
- Infectious prior to symptoms
Simulated emergence example

- Infection
- Incubating
- Infectious
- Hospitalized
- Diagnosed

Cluster identified 10 cases diagnosed

Reported
Exportation risk Zhejiang province

<table>
<thead>
<tr>
<th>Rank</th>
<th>Destination</th>
<th>Departing Passengers, month$^{-1}$</th>
<th>Cases required to exceed importation risk of 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>China</td>
<td>1,271,083</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Hong Kong</td>
<td>35,771</td>
<td>80</td>
</tr>
<tr>
<td>3</td>
<td>Taiwan</td>
<td>33,288</td>
<td>86</td>
</tr>
<tr>
<td>4</td>
<td>Rep. Korea</td>
<td>21,920</td>
<td>130</td>
</tr>
<tr>
<td>5</td>
<td>Thailand</td>
<td>17,630</td>
<td>162</td>
</tr>
<tr>
<td>6</td>
<td>Macao</td>
<td>13,730</td>
<td>208</td>
</tr>
<tr>
<td>7</td>
<td>Italy</td>
<td>11,958</td>
<td>239</td>
</tr>
<tr>
<td>8</td>
<td>Malaysia</td>
<td>11,526</td>
<td>248</td>
</tr>
<tr>
<td>9</td>
<td>Japan</td>
<td>7,437</td>
<td>384</td>
</tr>
<tr>
<td>10</td>
<td>Singapore</td>
<td>6,479</td>
<td>441</td>
</tr>
<tr>
<td>11</td>
<td>France</td>
<td>4,288</td>
<td>666</td>
</tr>
<tr>
<td>12</td>
<td>Spain</td>
<td>3,567</td>
<td>800</td>
</tr>
<tr>
<td>13</td>
<td>USA</td>
<td>3,156</td>
<td>904</td>
</tr>
<tr>
<td>14</td>
<td>Viet Nam</td>
<td>2,622</td>
<td>1089</td>
</tr>
<tr>
<td>15</td>
<td>India</td>
<td>2,564</td>
<td>1113</td>
</tr>
</tbody>
</table>

\[
\frac{X}{F} \approx \frac{I}{N}
\]

Imports A(H7N9) 2013+

<table>
<thead>
<tr>
<th>Country</th>
<th>Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hong Kong</td>
<td>21</td>
</tr>
<tr>
<td>Taiwan</td>
<td>5</td>
</tr>
<tr>
<td>Canada</td>
<td>2</td>
</tr>
<tr>
<td>Macao</td>
<td>2</td>
</tr>
<tr>
<td>Malaysia</td>
<td>1</td>
</tr>
</tbody>
</table>

Data source: OAG traffic analyser; HKCHP reports

Read et al 2015 Lancet
Scenario outcomes

Identification: 15 diagnosed cases
Reporting: 15 days

Best case
- Probability epidemic size S or larger
- $p(S \geq s)$

Worst case
- R_0
 - Hong Kong
 - Rep. Korea
 - Japan, Italy
 - France
 - Spain
 - USA

Epidemic size when reported, S
Conclusions

• Intuitive, but important to quantify

• Feasible for epidemic to be firmly established when first identified and reported

• Reasonable risk outbreak has reached other countries before identified and reported in origin country

• Situation much worse for mild disease / poor surveillance
 • Expect significant delay in identification
 • e.g., A(H1N1)pdm 2009

📧 readj2@lancs.ac.uk
Delays in diagnosis and reporting

Delays are a function of:

- pathogen characteristics
- healthcare provision
- governance

A(H7N9) China

Infection
Hospitalized
Reported to national body
Reported by WHO

Symptoms onset
Diagnosed
Reported to WHO
Global connectivity of China

- Highly connectivity via airline network
- Provinces with more A(H7N9) cases also have most departing passengers

Data source: OAG traffic analyser, Jan 2017