Evaluation of a candidate WHO International Standard for Zika antibody as a vaccine reference reagent

Sarah Kempster
Challenges for Vaccine Development against Emerging Diseases

- Many emerging diseases agents require high containment facilities
 - Limited facilities for handling whole agent
 - Extremely limited facilities for pre-clinical challenge studies
 - Prevent academics and SME’s entering field

- Dispersed and fragmented research field
 - How to compare data from different groups
 - How to compare data throughout pre and clinical development

- The availability of a common reference standard addresses these difficulties
Aims

- To create a serological **vaccine** reference reagent which would
 - Set a benchmark for immunogenicity studies
 - Facilitate all stages of vaccine development by harmonising data
 - Overcome biocontainment / bio-security restrictions can limit vaccine development

- NIBSC works with the WHO to produce over 90% of the International Standards for biological medicines.
Anti-Zika Standard

- Candidate International Standard (IS) material (16/320-14)
- Freeze dried 0.25mL
- Included in WHO International collaborative study
- Convalescent plasma pooled (2 individuals)
Old World vs. New World Models

<table>
<thead>
<tr>
<th></th>
<th>Serology (d42pi)</th>
<th>Viremia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Euroimmun ZIKV IgG (RU/mL)</td>
<td>Mikrogen RecomLine Tropical</td>
</tr>
<tr>
<td></td>
<td>ZIKV NS1</td>
<td>ZIKV E</td>
</tr>
<tr>
<td>Old World</td>
<td>Cynomolgus Macaque</td>
<td>4.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.42</td>
</tr>
<tr>
<td></td>
<td>Rhesus Macaque</td>
<td>10.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180.77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>81.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70.75</td>
</tr>
<tr>
<td>New World</td>
<td>Marmoset</td>
<td>73.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70.55</td>
</tr>
<tr>
<td></td>
<td>Tamarins</td>
<td>4.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.64</td>
</tr>
</tbody>
</table>

PRVABC59 challenge. Virus provided by NCPV.
Passive transfer model

- 25mLs administered intraperitoneal to Cynomolgus macaques.
- Challenge at 24 hours with PRVABC59 (sub-cut).
- Blood collected at set intervals.

Half-life approx. 18 days.
Results - Viremia

![Graph showing viremia levels over days with different samples labeled R1 to R13 and control labeled + Anti-Zika.](image-url)
Results - Serology

IgM

- Days PI

Challenge

Positive Cut-off

Challenge

Cut-off

IgG

- Days PI

Challenge

+ Anti-Zika

Control
In vitro neutralisation
Conclusions

- The anti-Zika reference material alone is sufficient to confer protection *in vivo*.
- Further study ongoing to establish the lowest titre that can provide protection.
- This study sets a paradigm to produce serological vaccine reference reagents for other Priority Emerging Pathogens.
Future projects

- Vaccine reference reagents will enable the efficacy of candidate vaccines to be compared.
Acknowledgements

NIBSC BTPAAD:

Neil Almond
Claire Ham
Jo Hall
Debbie Ferguson
Neil Berry

NIBSC Viral Vaccines:

Mark Page
Giada Mattiuzzo
James Ashall
Sophie Myhill
Valwynne Faulkner

Collaborative study participants.

Innovate UK

BocaBiolistics

Joseph Mauro, William Hill