Use of Pseudotyped Viruses for the Production of Reference Materials as part of Emerging Viral Outbreak Preparedness

Emma Bentley

emma.bentley@nibsc.org
International Reference Materials

- NIBSC is a World leader in the production of biological reference material and standards
 - Produces >90% WHO International standards

- Used to monitor assay function and calibrate results into International Units

- Established via a multi-lab collaborative study and assessment of candidate materials:
 - Ability to harmonise data
 - Commutability
 - Stability

Catalogue available: www.nibsc.org
Emerging Virus Antibody Reference Material

WHO Blueprint priority diseases

- Crimean-Congo haemorrhagic fever (CCHF)
- Ebola virus disease
- Marburg virus disease
- Lassa fever
- Middle East respiratory syndrome coronavirus (MERS-CoV)
- Severe Acute Respiratory Syndrome (SARS)
- Nipah viral disease
- Rift Valley fever (RVF)
- Zika
- Disease X

Require an alternative source of antigen to characterise material for BSL4 pathogens at a low containment level...

- Assist comparison of results from treatment/vaccine efficacy clinical trials
- Preferred candidate is a pool of plasma/sera from convalescent patients
Pseudotyped Virus

Lentiviral core
- HIV gag-pol
- Env.
- Reporter

Plasmid co-transfection of producer cells

Harvest lentiviral pseudotype

- Spherical morphology
- Reporter gene integrated within cell genome
- Results acquired 48-72hrs post-infection

Vesiculoviral core
- rVSV

Inoculate rVSV onto cells expressing foreign envelope glycoprotein

Harvest pseudotyped rVSV

- Bullet shaped
- Transient expression of reporter gene
- Results acquired 24hrs post-infection
Antibody Characterisation with Pseudotypes

Neutralisation Assay
Titrate antibody + pseudotype onto target cells
- Positive correlation between reporter gene signal and cells infected

ELISA
Pseudotype as the coating antigen
- Allows conformational presentation of glycoprotein instead of monomeric recombinant protein
Comparison of Pseudotyping Systems

- Collaborative study participants reported neutralisation titres of candidate material using other pseudotyping systems

Correlation between wildtype virus and pseudotype-based assays was better when using the VSV core system
Pseudotyping The Next Targets

- Produced Lassa pseudotyped virus with a lentiviral and vesiculoviral core
- Comparing neutralisation patterns using monoclonal antibodies

\[\text{IC}_{50} \text{ correlation coefficient }(r) = 0.76 \]
Conclusion

• Pseudotyped virus allowed candidate antibody material against Ebola virus to be characterised at a low containment level, supporting the establishment of International Reference Reagents

• Use of a vesiculoviral core component demonstrated better correlation with wild-type Ebola virus assays

• Requirement to evaluate the most appropriate system for each high containment virus

• Currently establishing both systems in work towards producing antibody reference material against Lassa and Nipah virus
Acknowledgements

NIBSC
Mark Hassall
Sophie Myhill
Peter Rigsby
Lindsay Stone
Dianna Wilkinson
Mark Page
Giada Mattiuzzo

Can you donate candidate material for Lassa/Nipah/Marburg/Sudan/CCHF virus?

Would you like to participate in collaborative studies?

Please get in touch: emma.bentley@nibsc.org

University of Sussex
Edward Wright

Visit poster number 21.107 tomorrow!

Collaborative Study Participants

Microbiology Society Travel Grant